Modeling Intraglomerular Transport in Diabetic Kidney Disease

Ashlee N. Ford Versypt^{1,2}, Minu R. Pilvankar¹, Ashlea D. Sartin¹, Claire V. Streeter¹, Steve M. Ruggiero¹ School of Chemical Engineering, Oklahoma State University; ²Harold Hamm Diabetes Center, OUHSC

NSF CAREER NIH NIGMS R35GM133763

Introduction

Diabetic kidney disease

- 44% of all new kidney failure cases are diabetics
- Kidneys are a filtration system, and DKD makes this process less effective
- Kidneys have many different cells with many different functions

Increased blood glucose and decreased insulin sensitivity cause damage all over the body

https://pdb101.rcsb.org/global-health/diabetes-mellitus/monitoring/complications

Damage in the kidney

- Filters of the kidneys become damaged
- Kidneys leak abnormal amounts of protein into the urine

https://nmkidney.org/kidney_edu/kidney-related-diseases/

Purpose

Create a mathematical model to represent the transport of glucose in the glomerulus and the transport of key biochemicals that respond to glucose during injury.

Kidney Damage by Diabetes

Glomerulus FODOCYTE GOUMPAN'S STREE BOWMAN'S STREE FOOT FOOT

Nephrin loss breaks the final layer of the glomerular filtration barrier (GFB)

- Nephrin holds the podocyte cells together
- Loss of nephrin causes the podocyte cells to collapse and fuse together

Mesangial cells are cells in the kidney that make up the mesangium

- Located inside the glomerulus and in between the capillaries
- Mesangial cells multiply and capillaries begin to change shape

Modeling Approach

Renin-angiotensin network sensitive to glucose affects podocyte health

Glucose transport through mesangial matrix and GFB using Darcy flow CFD in COMSOL

CompuCell3D for hybrid agent-based and differential equations-based dynamic tissue model

Results

Glucose concentration (mM)

Renin concentration (mM)

ANG I concentration (mM)

ANG II concentration (mM)

